

Introducing AURORA

Actionable eUropean ROadmap for early-life health Risk Assessment of micro- and nanoplastics

Prof. Roel Vermeulen, Utrecht University & University Medical Center Utrecht

www.AuroraResearch.eu

What are plastics?

https://knowablemagazine.org/article/food-environment/2020/solving-growing-plastics-waste-puzzle. Accessed 28 April 2023 Hahladakis JN et al. 2018. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater.

Fantastic plastic

1950s

1960s

No cardboard taste...can't get soggy! This plastic cup at "toss-away" prices makes paper cups strictly old-fashioned!

SCOTT 😽 MAKES IT BETTER FOR YOU

1990s

The thrill of surfing. The agony of choosing a color.

and their brother. Now for the hard part: what color will it be? www.apple.com 🗯 Think different:

Courtesy of Florian Meier

June 3, 2023, APA/AFP/ISHARA S. KODIKARA

Large planetary health problem

Overview of human MNP studies (by Aug 2023)

Authors	Year	Setting	Subject	Sample	Method	1
Pauly, et al.	1998	NY, USA	114 lung cancer patients	lung tissue	microscopy	
Nayebare, et al.	2018	NY, USA	30 healthy adults	urine	HPLC-MS/MS	(
Schwabl, et al.	2019	EU and Asia	8 healthy volunteers	stool	FITR	1
Monteleone, et al.	2019	Furtwangen, DE	4 healthy volunteers	blood	FTIR	
Zhang, et al,	2020) Beijing, CN	26 male students	feces	FTIR	2
Ibrahim, et al.	2020	Peninsular, Malaysia	11 adults	colectomy samples	stereo- and FTIR microscopy	i
Yan, et al.	2020) Nanjing, CN	human	feces	Raman microspectroscopy	1
Zhang, et al.	2021	NY, USA	3 new-born, and 6 infants, and 10 adults	meconium, feces	HPLC-MS/MS	1
Luqman, et al.	2021	Surabaya, IDN	11 healthy participants	stool	Raman spectroscopy	1
Amato-Lourenço, et al.	2021	São Paulo, BR	20 corpses	lung tissue	Raman spectroscopy	1
Wibowo, et al.	2021	Mojokerto, ID	11 healthy participants	stool	Raman spectroscopy	1
Braun, et al.	2021	Berlin, DE	2 women	placenta, meconium, and maternal stool	FTIR	Ī
Ragusa, et al.	2021	Rome, IT	4 women	placenta	Raman spectroscopy	ĺ
Abbasi, et al.	2021	Iran	2000	hair, skin, saliva	Raman microspectroscopy	ĺ
Liu, et al.	2022	Shanghai, CN	18 mother-infant pairs	placenta, meconium, infant feces, breast milk	8700 LDIR	ĺ
Leslie, et al.	2022	AMS, NL	22 healthy volunteers	blood	Py-GC/MS	
Yan, et al.	2022	Nanjing, CN	50 healthy and 52 IBD patients	feces	Raman spectroscopy	ļ
Huang, et al.	2022	Shantou, CN	22 patients with lung disease	sputum	FITR	ĺ
Baeza-Martínez, et al.	2022	Alicante, ES	44 patients	bronchoalveolar lavage fluid (lower airway)	μ-FTIR	ļ
Liu, et al.	2022	Shanghai, CN	18 mother-infant pairs	placentas and meconium	LDIR	ĺ
Jenner, et al.	2022	Hull, UK	11 patients	lung tissue	μFTIR	ĺ
Ragusa, et al.	2022	Rome, IT	34 women	breastmilk 1 day after delivery	Raman spectroscopy	ĺ
Horvatits, et al.	2022	Hamburg, DE	6 patients and 5 healthy	liver, kidney and spleen	fluorescence microscopy and µRaman	ĺ
Ho, et al.	2022	2 Hongkong	8 adults	feces	Raman microspectroscopy	1
Ragusa, et al.	2022	Rome, IT	12	placenta	UHPLC-MS/MS	1
Baeza-Martínez, et al.	2022	Alicante, ES	44 adult patients	BALF	stereomicroscopy, µ-FTIR and SEM-EDS	1
Zhang, et al.	2022	Chengdu, CN	40 subjects	intestinal secretions	laser infrared imaging	ĺ
Ragusa, et al.	2022	Rome, IT	10 pregnant women	placenta	VP-SEM and TEM	ĺ
Chen, et al.	2022	Shanghai, CN	Non-small cell lung cancer patients	100 lung specimens with ground glass nodule	µ-FTIR, LDIR, and Raman, SEM/EDS	l
Zhu, et al.	2023	Wuxi, CN	17 healthy	placenta	LD-IR spectroscopy	ĺ
Yang, et al.	2023	Beijing, CN	15 cardic patients	heart, blood, etc.	LDIR	1
Rotchell, et al.	2023	Hull, UK	5 surgery patients	saphenous vein tissue	μFTIR	ĺ
Shahsavaripour, et al.	2023	Sirjan, Iran	19 workers	skin, saliva, hair	micro-Raman spectroscopy	ĺ
Pironti, et al.	2023	Ancona, IT	6	urine	Raman spectroscopy	ĺ
Montano, et al.	2023	Campania, IT	10 healthy men	semen	Raman microspectroscopy	ĺ
Zhao, et al.	2023	Beijing, CN		30 semen and 6 testis	LD-IR and Py-GC/MS	Ì
Li, et al.	2023	Guangzhou, CN	37 newborns	meconium	3D microscope and micro-FTIR	
Guan, et al.	2023	Nanjing, CN	104 patients	13 body fluids	Raman microspectroscopy	
Wu, et al.	2023	Nanjing, CN	26 adult cardiovascular patients	thrombus	Raman spectroscopy	1
Cetin. et al.	2023	Erzurum, TR	16 colonrectal cancer patients and 15 controls	tumoral and non tumoral colon tissues	ATR-FTIR, Raman	

MNP is a complex exposure

- Size fractions (micro, nanoplastic)
- Morphology
 - Fibre, fragment, granule, film, foam, filament, flake

Complex exposure

- Size fractions
- Morphology
 - Fibre, fragment, granule, film, foam, filament, flake
- Chemical composition
 - 5300 polymer formulations are commercially available
 - Monomers and oligomers
 - Chemical additives (e.g., plasticizers, flame retardants, stabilizers, pigments, biocides) → up to 50% weight
 - Non-intentionally added substances (i.e., impurities, reaction byproducts, degradation products)
- Solubility

EUZ UMC Utrecht

- Surface chemistry
- Adsorbed/absorbed
 - Microbes/bioflims, chemicals, metals

Utrecht

University

		CASRNs	Substance type	l Polymer type	Hazard classification	
Data availability			98%	28%	61%	
Functions			Metal Drganophosphor Drganohalogen JVCB	Several	PBT CMR EDC AqTox STOT_RE	
s	Monomers	948	• • • •			
Mon	Intermediates	ا 1 740 1	••••			
~ .	Antioxidant	581	• • • •	• •		
	Biocide	1 242	••••	• •		
	Colorant	3 663	$\bullet \bullet \bullet \bullet$	••		CASDN
s	Filler	1 833	• • • •	••		Der grou
ive	Flame retardant	364		• •		per grou
ldit	Impact modifier	31	· · •		* *	• 10
Ac	Light stabilizer	762	•••	• •		• 50
	Nucleating agent	25	• •			• 100
	Odor agent	843	• • • •	• •		• 100
	Plasticizer	864	• • • •	• •		• 250
-	Antistatic agent	200	• • • •	• •		5 00
	Blowing agent	102	• • • •	• •		1000
s	Catalyst	708	• • •	• •		
aic	Crosslinking agent	895	• • • •	••		2000
ing	Heat stabilizer	213	• • • •	• •		
ess	Initiator	478	• • • •	• •		
õ	Lubricant	1 679	$\bullet \cdot \cdot \bullet$	••		
Ъ	Solvent	73	· · • ·	• •	• • • •	
	Viscosity modifier	128	• • • •	• •		
	Others	2 974	$\bullet \cdot \bullet \bullet$	••	· • · • •	
Uncat	egorizable	3 282	$\bullet \cdot \bullet \bullet$			
Total CASRNs		10 547	2 332 272 1 464 2 703	1 317 1 671	57 951 30 1646 891	

AURORA

Goal: to develop a roadmap for assessing the health risks of micro- and nanoplastics for **early-life health**

Why Early Life Health?

Vulnerable time period

Longlasting effects into adulthood

Previous evidence of placent transfer of particles and chemicals related to impaired child development

Current gaps in Human Health Risk Assessment Framework MNPs on early-life health

Sample contamination		Characterising exposure		Exposure duration		Bioaccumulation	
Excretion rates		Polymer hazards		Particle hazards		Chemical hazards	
Priority tier data		Significance of presence		Hazard values		Dose-responses	
Semi-quantitative RA approach		Quantitative RA approach		Integrating factors/vulnerability		Non-animal testing	
Reference		materials Use of expandi		xisting gms	Standa repor	rdised ting	

Christopher et al. Microplastics and Nanoplastics https://doi.org/10.1186/s43591-024-00089-3

MNP Quantification

Spectro-Microscopic techniques

Chromatography/Mass-spectrometry

MNP Quantification – Slow but Deep

 develop new methods for indepth characterization of micro- and nanoplastics in complex matrices (human tissues: urine, blood, placenta)

Microscopy, Spectroscopy, Chromatography

Particle count, Mass, Chemical Composition, Size, Morphology, Surface Chemistry

Develop SOP for MNPs in complex sample matrices

Laura Zoutendijk

 Recovery rate = particles detected in droplet/theoretical number of particles in droplet in [±90%]

MNP in placenta samples

Laura Zoutendijk & Britt Juffer

Fig. 17: The placental perfusion model.

Placenta perfusion with fluorescent polystyrene particles (50 nm). Image through chemical force microscopy (CFM).

MNP Quantification – Scalability and complexity

Advancements in Assays for Micro- and Nano-Plastic Detection: Paving the Way for Biomonitoring and Exposomics Studies

Annual Review of Pharmacology and Toxicology

次

MNP Quantification – Fast and Wide

Innovate high-throughput methods for use in large scale health (biomonitoring) studies (FAST-ME)

Pyrolysis with GC-HRMS mass-based measurements of select polymers in human placenta

Courtesy Doug Walker, unpublished

Alkaline-assisted hydrolysis and dissolution provides unique chemical profiles for each polymer

Courtesy Doug Walker, unpublished

Hazard, in-vitro

Assess health effects in placenta and the developing fetus of common polymers, bioplastics, common mixtures (considering size, shape, degradation)

MNP uptake/transport and effects on placental integrity and function:

endocrine function, metabolism, immune responses, premature aging...

TIER 1 and 2 Summary – To date (~25 polymers tested)

	Assay type	Method	Endpoint	Indicative of
1	Cytotoxicity	CellTiter Glo	ATP production	metabolic activity
IER	Membrane integrity	LDH leakage	extracellular LDH	membrane disruption
	Oxidative stress	CellROX™ fluo probe	ROS production	pxidative stress
	Gene expression	qPCRs	interleukin 6 (IL-6)	flammation
			interleukin 8 (CXCL8)	inflammation
			nuclear factor environment ly at 100 re	defense against oxidative stress
			mancer of activated B cells (NF-kB)	inflammation/apoptosis
7			ceffects,	activator of apoptosis
IER		Minu	Tom Dependent Kinase Inhibitor 1A (CDKN1A)	cell cycle arrest
F	Cytokine secretion	ELISA	interleukin 6 (IL-6)	pro-inflammatory
			interleukin 8 (IL-8)	pro-inflammatory
			tumor necrosis factor-alpha (TNFα)	pro-inflammatory
			interleukin 10 (IL-10)	anti-inflammatory
			interleukin 1-beta (IL1β)	pro-inflammatory

Hazard, risk assessment – Human studies

Study health effects of micro- and nanoplastics exposure (and associated chemicals) in birth cohorts (800 placenta, cord blood samples currently analysed)

Human studies - Contamination

- *de novo* collection (n=25) from mother to fetus (ongoing) - ENVIRONAGE birth cohort
 - Glass collection tubes (**blood mother, cord blood**, urine mother)
 - Aluminum foil for tissue storage (placenta tissue)

Current gaps in Human Health Risk Assessment Framework MNPs on early-life health

Sample contamination	Characterising exposure	erising Sure Exposure duration		Bioaccumulation		
Excretion rates	Polymer hazards	Particle	Particle hazards		Chemical hazards	
Priority tier data	Significance of presence	Hazard	Hazard values		Dose-responses	
Semi-quantitative RA approach	Quantitative RA approach	Integr factors/vu	Integrating factors/vulnerability		Non-animal testing	
Reference	materials Use pa	of existing tradigms	Standa repor	rdised ting		

Christopher et al. Microplastics and Nanoplastics https://doi.org/10.1186/s43591-024-00089-3

Publications

- Mandemaker LDB, Meirer F. Spectro-Microscopic Techniques for Studying Nanoplastics in the Environment and in Organisms. *Angew Chem Int Ed.* 2022; <u>https://doi.org/10.1002/anie.202210494</u>. (invited mini-review)
- Dusza HM, ..., Vähäkangas KH. Experimental human placental models for studying uptake, transport and toxicity of micro-and nanoplastics. *Sci Total Environ.* 2022; <u>https://doi.org/10.1016/j.scitotenv.2022.160403</u>.
- Dusza HM, ..., Legler J. Uptake, Transport, and Toxicity of Pristine and Weathered Micro-and Nanoplastics in Human Placenta Cells. Environ Health Perspectives, 2022; <u>https://doi.org/10.1289/EHP10873</u>.
- Shao K, ..., Walker DI. Advancements in Assays for Micro- and Nanoplastic dectection: Paving the Way for Biomonitoring and Exposomics Studies. Annu Rev Pharmacol Toxicol. In press. (invited review)
- Christopher EA, ..., Boyles MSP. Impacts of Micro- and Nanoplastics on Early-life Health: A Roadmap Towards Risk Assessment. *Microplastics and Nanoplastics*. In press.

Experimental human placental models for studying uptake, transport and toxicity of micro- and nanoplastics (MNPs)

Thanks

Prof. Roel Vermeulen, UMC Utrecht, Utrecht University Runyu Zou, UMC Utrecht Hanna Dusza, Utrecht University Prof. Juliette Legler, Utrecht University Florian Meier, Utrecht University Laurens Mandemaker, Utrecht University Laura Zoutendijk, Utrecht University Amanda Durkin, UMC Utrecht Jane Muncke, Food Packaging Forum **Douglas Walker**, Emory University Petra Přibylová, Masaryk University Nelly Saenen, Hasselt University Prof. Tim Nawrot, Hasselt University Prof. Martine Vrijheid, ISGlobal Prof. Majorie van Duursen, VU Amsterdam Prof. Barbara Scholz-Boettcher, University of Oldenburg Matthew Boyles, Institute of Occupational Medicine

The AURORA project has received funding from the European Union's Horizon 2020 research and innovation program under AURORA grant agreement No 964827.

Hazard, in-vitro

Human studies – Exposure assessment

 80 biopsies from 10 placenta's for MNP's inter- and intravariability study transferred

