# Melamine: Potential Endocrine, Reproductive, and Neurotoxic Activities

Ashley L. Bolden, MS



# mel·a·mine

A white crystalline compound used in the making of plastics.







#### Urolithiasis and Bladder Carcinogenicity of Melamine in Rodents<sup>1</sup>

RONALD L. MELNICK,<sup>2</sup> GARY A. BOORMAN, JOSEPH K. HASEMAN, RICHARD J. MONTALI,\* AND JAMES HUFF

National Toxicology Program, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, North Carolina 27709, and \*Litton Bionetics, Inc., Kensington, Maryland 20795

mini review

http://www.kidney-international.org

© 2009 International Society of Nephrology

### Childhood urinary stones induced by melamine-tainted formula: how much we know, how much we don't know

Jie Ding<sup>1</sup>

<sup>1</sup>Department of Pediatrics, Peking University First Hospital, Beijing, China

Journal of Toxicology and Environmental Health, Part A, 73:1407–1419, 2010 Copyright © Taylor & Francis Group, LLC ISSN: 1528-7394 print/1087-2620 online DOI: 10.1080/15287394.2010.511540



COMPARATIVE NEPHROTOXICITIY INDUCED BY MELAMINE, CYANURIC ACID, OR A MIXTURE OF BOTH CHEMICALS IN EITHER SPRAGUE-DAWLEY RATS OR RENAL CELL LINES

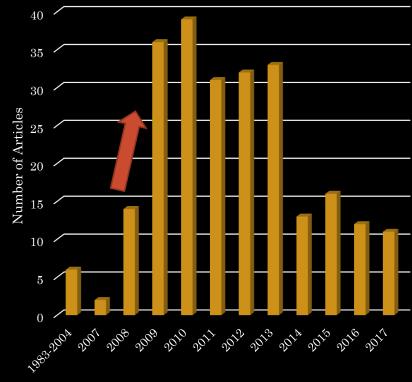
Lan Choi<sup>1</sup>, Min Young Kwak<sup>1</sup>, Eun Hwa Kwak<sup>1</sup>, Dong Hyun Kim<sup>1</sup>, Eun Young Han<sup>1</sup>, Taehyun Roh<sup>1</sup>, Jung Yun Bae<sup>1</sup>, Il Young Ahn<sup>1</sup>, Jea Yeon Jung<sup>1</sup>, Mi Jung Kwon<sup>1</sup>, Dong Eun Jang<sup>2</sup>, Seong Kwang Lim<sup>2</sup>, Seung Jun Kwack<sup>2</sup>, Soon Young Han<sup>3</sup>, Tae Seok Kang<sup>3</sup>, Seung Hee Kim<sup>1</sup>, Hyung Sik Kim<sup>3</sup>, Byung Mu Lee<sup>1</sup>

Use of urinary renal biomarkers to evaluate the nephrotoxic effects of melamine or cyanuric acid in non-pregnant and pregnant rats

O.J. Bandele <sup>a,\*</sup>, C.B. Stine <sup>b</sup>, M. Ferguson <sup>b</sup>, T. Black <sup>a</sup>, N. Olejnik <sup>a</sup>, Z. Keltner <sup>a</sup>, E.R. Evans <sup>b</sup>, T.C. Crosby <sup>b</sup>, R. Reimschuessel <sup>b</sup>, R.L. Sprando <sup>a</sup>

a Division of Toxicology, Office of Applied Research and Safety Assessment, CFSAN, U.S. FDA, Laurel, MD, United States

b Division of Applied Veterinary Research, Office of Research, CVM, U.S. FDA, Laurel, MD, United States

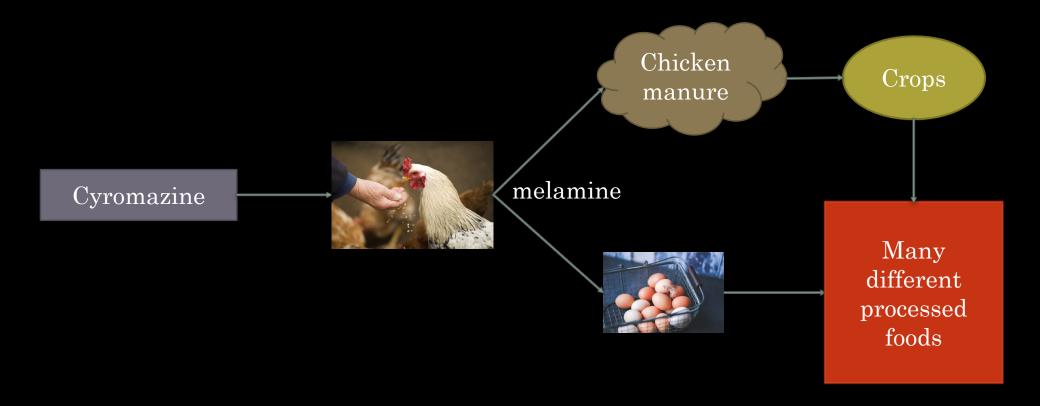

Pediatr Nephrol (2016) 31:2043–2054 DOI 10.1007/s00467-015-3222-3

EDUCATIONAL REVIEW

Toxic environmental exposures and kidney health in children

Darcy K. Weidemann 1 · Virginia M. Weaver 2,3 · Jeffrey J. Fadrowski 3,4

#### Publication Trends for Melamine and Renal Effect




Year of Publication

# More than baby formula



# Cyromazine?



## What other impacts might melamine have????



The effect of exogenous melamine on rat hippocampal neurons

Yan Wang<sup>1</sup>, Fei Liu<sup>2</sup>, Yuejiao Wei<sup>1</sup> and Daicheng Liu<sup>1</sup>

Effect of melamine on potassium currents in rat hippocampal CA1 neurons

Jia-Jia Yang a, Yu-Tao Tian a, Zhuo Yang b, Tao Zhang a,\*

<sup>a</sup> Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Science, Nankai University, Tianjin 300071, PR China <sup>b</sup> College of Medicine, Nankai University, Tianjin 300071, PR China



The reproductive toxicity of melamine in the absence and presence of cyanuric acid in male mice

Rong H. Yin <sup>a</sup>, Xin Z. Wang <sup>a</sup>, Wen L. Bai <sup>a,\*</sup>, Chang D. Wu <sup>a</sup>, Rong L. Yin <sup>b</sup>, Chang Li <sup>c</sup>, Jiao Liu <sup>a</sup>, Bao S. Liu <sup>a</sup>, Jian B. He <sup>a,\*</sup>

# Scoping Reviews

· New to environmental health research.

• Determination of body of evidence maturity.

• Identification of research gaps.

• Pinpoint bodies of evidence for systematic review.

# Objectives of study

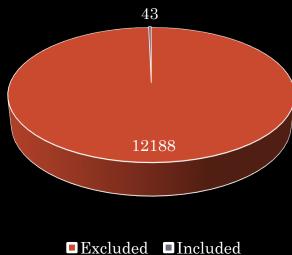
• Determine if a recommendation for systematic review of a specific endpoint is feasible.

• Identify research gaps.

• Prioritize future research.

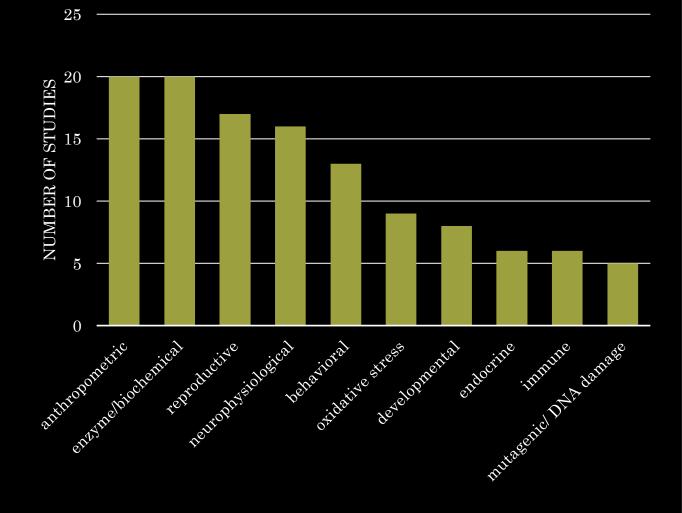
### Methods

• Developed search logic.

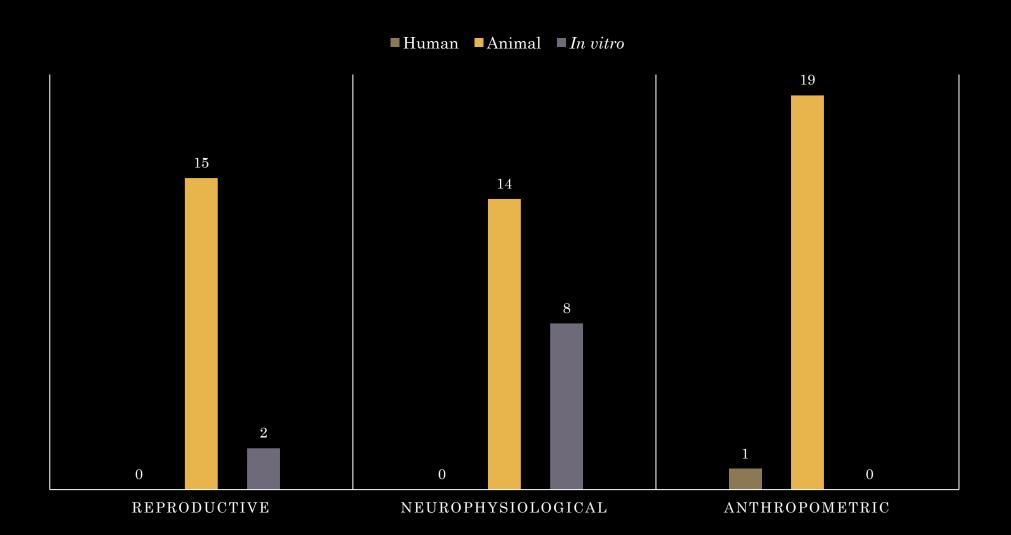

• Performed electronic searches using PubMed and Web of Science up to November 2016.

• Screened articles using DistillerSR®.

• Completed summary level data extraction.


### Results

# Articles <sub>43</sub>




- 100% published between 2010-2016
- 74% assessed in vivo models
- 35% assessed in vitro models

#### Non-renal physiological effects



# Endpoint Distribution



# Anthropometric

• Endpoints for analysis included body weight, body length, and fetal growth.

• Studies had measures from several different life stages.

• Models included fish, rodent, human, and chicken.

• No relevant mechanistic data seems to be available.

## Reproductive

• Studies of both male and female reproduction were found. Endpoints included sperm count, follicular atresia, and oocyte competence.

• There were studies that might provide mechanistic support.

Replication of endpoints maybe lacking.

• While different models included rodents and chicken there are no human studies available.

## Neurophysiological

- There were several studies that replicated similar endpoints primarily evaluations related to hippocampal function.
- In vitro assessments were completed that might provide mechanistic support.
- Relevant studies were completed in rodents and fish but none in humans.
- There were also behavioral studies that could be incorporated that assessed learning and memory.

### Future Directions

· Lack of human studies.

Lack of mechanistic studies.

• Little to no research on immune, cardiovascular, respiratory, metabolic endpoints.

### Recommendations

• Identified three areas that could be assessed using systematic review.

• For reproduction and anthropometric endpoints more studies in humans and more mechanistic support might strengthen these bodies of evidence.

• Neurophysiological area had the most robust literature base and is likely the best to move forward to systematic review.



#### Thanks

Staff: Johanna Rochester, PhD and Carol Kwaitkowski, PhD. Theo Colborn, PhD, Lynn Carroll, PhD, and Christina Ribbens.







**Funders:** The International Chemical Secretariat (ChemSec), Tides Foundation, Arkansas Community Trust, Wallace Genetic Foundation, and Winslow Foundation.



Follow us on Twitter @endo\_exchange Sign up for our mailing list at endocrinedisruption.org

**Publication:** Melamine, beyond the kidney: A ubiquitous endocrine disruptor and neurotoxicant? Bolden AL, Rochester JR, Kwiatkowski CF. Melamine, beyond the kidney: A ubiquitous endocrine disruptor and neurotoxicant?. Toxicology Letters. 2017 Oct 5;280:181-9. <a href="http://www.sciencedirect.com/science/article/pii/S0378427417311396">http://www.sciencedirect.com/science/article/pii/S0378427417311396</a>