

National Institute of Environmental Health Sciences Your Environment. Your Health.

ENVIRONMENTAL CHEMICALS AND PRETERM BIRTH: EMERGING THREATS AND PRIORITIES FOR FUTURE RESEARCH

Kelly K. Ferguson Tenure track investigator Epidemiology Branch National Institute of Environmental Health Sciences

National Institutes of Health • U.S. Department of Health and Human Services

OVERVIEW

My overarching research objective is to improve the understanding of how the environment impacts pregnancy and childhood health.

OVERVIEW

My overarching research objective is to improve the understanding of how the environment impacts pregnancy and childhood health.

PRETERM BIRTH

- Defined as delivery before 37 weeks gestation
- Affects roughly 10 percent of pregnancies
- Most important risk factor for neonatal mortality
- Associated with neonatal morbidities and high healthcare costs
- Public health priority

Stay Safe During Pregnancy

Every pregnant woman in America is exposed to at least 43 different toxic chemicals.

Many chemicals can pass from a pregnant woman to her fetus.

Prenatal exposure to certain chemicals is associated with:

- Stillbirth
- Miscarriage
- Birth defects
- Childhood cancers
- Impaired brain development in children

Toxic chemicals can have longlasting reproductive health effects

> Reduce your exposure to environmental chemicals before and during pregnancy:

- Limit processed foods
- Use BPA-free products
- Limit foods high in animal fat
- Avoid pesticides and solvents.
- Wash fresh fruits and vegetables
- Avoid fish with high mercury levels

PHTHALATE EXPOSURE

Environmental exposure sources

Personal care products Vinyl plastics Food and beverage Absorption and metabolism

Ingestion Dermal absorption Inhalation

Associated health outcomes

Hormone disruption Infant development Birth outcomes

LIFECODES BIRTH COHORT

- Conducted at Brigham and Women's Hospital
- PI: Dr. Thomas McElrath
- Ongoing recruitment since 2006 (N~4000)
- Key features:
 - Early recruitment
 - Repeated sampling
 - Validation of pregnancy outcomes

PRETERM BIRTH IN LIFECODES

SPONTANEOUS

Presentation

- preterm premature rupture of membranes
- spontaneous preterm labor

Placental histology

- inflammation

PLACENTAL

Presentation

- intrauterine growth restriction
- preeclampsia

Placental histology

- poor placentation

CASE-CONTROL STUDY OF PRETERM BIRTH

- 2006-2008
- 130 cases (<37 weeks gestation)
- 352 controls
- Phenotyping preterm based on presentation:
 - Spontaneous (n=56)
 - Placental (n=35)
 - Neither (n=39)

McElrath et al. 2008, American Journal of Epidemiology

PHTHALATE EXPOSURE

Phthalates metabolites measured in urine from each of four study visits

- Total (free+glucuronidated) levels measured via mass spectrometry
- Specific gravity used to adjust for urine dilution

High molecular weight phthalates

MCPP

MBP

MEP

Low molecular weight phthalates

PHTHALATE EXPOSURE AND PRETERM BIRTH

Ferguson et al. 2014, JAMA Pediatrics

- Established by the Biomarkers of Oxidative Stress Study (NIEHS) as best biomarker of oxidative stress
- Sensitive, specific, and consistent
- Easy to measure in stored urine samples

- Established by the Biomarkers of Oxidative Stress Study (NIEHS) as best biomarker of oxidative stress
- Sensitive, specific, and consistent
- Easy to measure in stored urine samples

Urinary Phthalate Metabolites and Biomarkers of Oxidative Stress in Pregnant Women: A Repeated Measures Analysis

Kelly K. Ferguson,¹ Thomas F. McElrath,² Yin-Hsiu Chen,³ Bhramar Mukherjee,³ and John D. Meeker¹

Table 4. Percent difference (95% CIs) in oxidative stress biomarker in association with IQR increase in phthalate metabolite level.

		8-0HdG		8-Isoprostane	
Metabolite	IQR ^a	% difference (95% CI)	<i>p</i> -Value	% difference (95% CI)	<i>p</i> -Value
MEHP	16.6 µg/L	2.74 (-0.47, 6.05)	0.09	14.1 (8.06, 20.5)	< 0.001
MEHHP	56.9 µg/L	8.40 (4.93, 12.0)	< 0.001	15.8 (9.53, 22.4)	< 0.001
MEOHP	29.4 µg/L	7.34 (4.01, 10.8)	< 0.001	15.9 (9.87, 22.3)	< 0.001
MECPP	80.5 µg/L	6.53 (2.96, 10.2)	< 0.001	23.0 (16.0, 30.4)	< 0.001
∑DEHP	0.63 µmol/L	6.67 (3.23, 10.2)	< 0.001	19.1 (12.7, 25.9)	< 0.001
MBzP	12.5 µg/L	20.7 (15.6, 26.1)	< 0.001	42.7 (31.8, 54.4)	< 0.001
MBP	24.8 µg/L	18.1 (13.5, 22.9)	< 0.001	42.0 (32.0, 52.7)	< 0.001
MiBP	11.3 µg/L	30.3 (24.4, 36.5)	< 0.001	56.4 (43.9, 69.9)	< 0.001
MEP	355 µg/L	11.5 (7.32, 15.9)	< 0.001	19.7 (11.8, 28.2)	< 0.001
MCPP	2.98 µg/L	7.23 (3.83, 10.7)	< 0.001	20.2 (13.7, 27.1)	< 0.001

- Established by the Biomarkers of Oxidative Stress Study (NIEHS) as best biomarker of oxidative stress
- Sensitive, specific, and consistent
- Easy to measure in stored urine samples

Urinary Phthalate Metabolites and Biomarkers of Oxidative Stress in Pregnant Women: A Repeated Measures Analysis

Kelly K. Ferguson,¹ Thomas F. McElrath,² Yin-Hsiu Chen,³ Bhramar Mukherjee,³ and John D. Meeker¹

Table 4. Percent difference (95% CIs) in oxidative stress biomarker in association with IQR increase in phthalate metabolite level.

		8-OHdG		8-Isoprostane		
Metabolite	IQR ^a	% difference (95% CI)	<i>p</i> -Value	% difference (95% CI)	<i>p</i> -Value	
MEHP	16.6 µg/L	2.74 (-0.47, 6.05)	0.09	14.1 (8.06, 20.5)	< 0.001	
MEHHP	56.9 µg/L	8.40 (4.93, 12.0)	< 0.001	15.8 (9.53, 22.4)	< 0.001	
MEOHP	29.4 µg/L	7.34 (4.01, 10.8)	< 0.001	15.9 (9.87, 22.3)	< 0.001	
MECPP	80.5 µg/L	6.53 (2.96, 10.2)	< 0.001	23.0 (16.0, 30.4)	< 0.001	
∑DEHP	0.63 µmol/L	6.67 (3.23, 10.2)	< 0.001	19.1 (12.7, 25.9)	< 0.001	
MBzP	12.5 µg/L	20.7 (15.6, 26.1)	< 0.001	42.7 (31.8, 54.4)	< 0.001	
MBP	24.8 µg/L	18.1 (13.5, 22.9)	< 0.001	42.0 (32.0, 52.7)	< 0.001	
MiBP	11.3 µg/L	30.3 (24.4, 36.5)	< 0.001	56.4 (43.9, 69.9)	< 0.001	
MEP	355 µg/L	11.5 (7.32, 15.9)	< 0.001	19.7 (11.8, 28.2)	< 0.001	
MCPP	2.98 µg/L	7.23 (3.83, 10.7)	< 0.001	20.2 (13.7, 27.1)	< 0.001	

- Established by the Biomarkers of Oxidative Stress Study (NIEHS) as best biomarker of oxidative stress
- Sensitive, specific, and consistent
- Easy to measure in stored urine samples

Urinary Phthalate Metabolites and Biomarkers of Oxidative Stress in Pregnant Women: A Repeated Measures Analysis

Kelly K. Ferguson,¹ Thomas F. McElrath,² Yin-Hsiu Chen,³ Bhramar Mukherjee,³ and John D. Meeker¹

Table 4. Percent difference (95% CIs) in oxidative stress biomarker in association with IQR increase in phthalate metabolite level.

		8-OHdG	8-Isoprostane		
Metabolite	IQR ^a	% difference (95% CI)	<i>p</i> -Value	% difference (95% CI)	<i>p</i> -Value
MEHP	16.6 µg/L	2.74 (-0.47, 6.05)	0.09	14.1 (8.06, 20.5)	< 0.001
MEHHP	56.9 µg/L	8.40 (4.93, 12.0)	< 0.001	15.8 (9.53, 22.4)	< 0.001
MEOHP	29.4 µg/L	7.34 (4.01, 10.8)	< 0.001	15.9 (9.87, 22.3)	< 0.001
MECPP	80.5 µg/L	6.53 (2.96, 10.2)	< 0.001	23.0 (16.0, 30.4)	< 0.001
∑DEHP	0.63 µmol/L	6.67 (3.23, 10.2)	< 0.001	19.1 (12.7, 25.9)	< 0.001
MBzP	12.5 µg/L	20.7 (15.6, 26.1)	< 0.001	42.7 (31.8, 54.4)	< 0.001
MBP	24.8 µg/L	18.1 (13.5, 22.9)	< 0.001	42.0 (32.0, 52.7)	< 0.001
MiBP	11.3 μg/L	30.3 (24.4, 36.5)	< 0.001	56.4 (43.9, 69.9)	< 0.001
MEP	355 µg/L	11.5 (7.32, 15.9)	< 0.001	19.7 (11.8, 28.2)	< 0.001
MCPP	2.98 µg/L	7.23 (3.83, 10.7)	< 0.001	20.2 (13.7, 27.1)	< 0.001

- Established by the Biomarkers of Oxidative Stress Study (NIEHS) as best biomarker of oxidative stress
- Sensitive, specific, and consistent
- Easy to measure in stored urine samples

TABLE 2

Preterm birth in association with interquartile range increase in geometric average (visits 1-3) urinary oxidative stress biomarkers

	Model 1 ^a			Model 2 ^b			
Variable	Control cases, n	Odds ratio (95% confidence interval)	P value	Control cases, n	Odds ratio (95% confidence interval)	P value	
Overall preterm bir	th						
8-OHdG	129,349	0.19 (0.11-0.34)	< .001	126,331	0.19 (0.10-0.34)	< .001	
8-Isoprostane	129,349	2.17 (1.48-3.20)	< .001	126,331	2.22 (1.47-3.36)	< .001	
Spontaneous prete birth	rm						
8-OHdG	56,349	0.21 (0.10-0.42)	< .001	56,331	0.18 (0.09—0.40)	< .001	
8-Isoprostane	56,349	4.25 (2.21-8.15)	< .001	56,331	6.25 (2.86—13.7)	< .001	
Placental preterm b	pirth						
8-OHdG	35,349	0.17 (0.07-0.41)	< .001	33,331	0.11 (0.04-0.32)	< .001	
8-Isoprostane	35,349	1.45 (0.79–2.66)	.24	33,331	0.94 (0.52—1.70)	.84	
8-OHdG, 8-hydroxydeoxy	guanosine.						

^a Adjusted for urinary specific gravity only; ^b Adjusted for urinary specific gravity, maternal age, race/ethnicity, education level, health insurance provider, and prepregnancy body mass index. *Ferguson. Oxidative stress and preterm birth. Am J Obstet Gynecol 2015.*

- Established by the Biomarkers of Oxidative Stress Study (NIEHS) as best biomarker of oxidative stress
- Sensitive, specific, and consistent
- Easy to measure in stored urine samples

TABLE 2

Preterm birth in association with interquartile range increase in geometric average (visits 1-3) urinary oxidative stress biomarkers

	Model 1 ^a			Model 2 ^b			
Variable	Control cases, n	Odds ratio (95% confidence interval)	P value	Control cases, n	Odds ratio (95% confidence interval)	<i>P</i> value	
Overall preterm bir	th						
8-OHdG	129,349	0.19 (0.11-0.34)	< .001	126,331	0.19 (0.10—0.34)	< .001	
8-lsoprostane	129,349	2.17 (1.48-3.20)	< .001	126,331	2.22 (1.47-3.36)	< .001	
Spontaneous preter birth	rm						
8-OHdG	56,349	0.21 (0.10-0.42)	< .001	56,331	0.18 (0.09-0.40)	< .001	
8-Isoprostane	56,349	4.25 (2.21-8.15)	< .001	56,331	6.25 (2.86—13.7)	< .001	
Placental preterm b	birth						
8-OHdG	35,349	0.17 (0.07-0.41)	< .001	33,331	0.11 (0.04-0.32)	< .001	
8-Isoprostane	35,349	1.45 (0.79–2.66)	.24	33,331	0.94 (0.52-1.70)	.84	
8-OHdG, 8-hydroxydeoxy	guanosine.						

^a Adjusted for urinary specific gravity only; ^b Adjusted for urinary specific gravity, maternal age, race/ethnicity, education level, health insurance provider, and prepregnancy body mass index. *Ferguson. Oxidative stress and preterm birth. Am J Obstet Gynecol 2015.*

MEDIATION BY OXIDATIVE STRESS

- Established by the Biomarkers of Oxidative Stress Study (NIEHS) as best biomarker of oxidative stress
- Sensitive, specific, and consistent
- Easy to measure in stored urine samples

WHAT'S NEXT?

What about maternal exposure to mixtures?

What do the oxidative stress markers mean?

Can we disaggregate other birth outcomes in environmental epidemiology?

WHAT'S NEXT?

What about maternal exposure to mixtures?

What do the oxidative stress markers mean?

Can we disaggregate other birth outcomes in environmental epidemiology?

WHAT'S NEXT?

What about maternal exposure to mixtures?

What do the oxidative stress markers mean?

Can we disaggregate other birth outcomes in environmental epidemiology?

ACKNOWLEDGEMENTS

COLLABORATORS John Meeker Thomas McElrath Bhramar Mukherjee David Cantonwine

INTRAMURAL RESEARCH PROGRAM AND NIEHS GRANTS R01ES018872, P42ES017198, P30ES017885

LABORATORIES

Gerry Pace and NSF International (phthalate analysis) Elizabeth Hurst and Cayman Chemical (oxidative stress analysis)